
Visual Exploration of Patterns in Multi-run Time-varying
Multi-field Simulation Data Using Projected Views

Vladimir Molchanov
Jacobs University
Campus Ring 1

28759 Bremen, Germany
v.molchanov@jacobs-university.de

Lars Linsen
Jacobs University
Campus Ring 1

28759 Bremen, Germany
l.linsen@jacobs-university.de

ABSTRACT
In the fields of science and engineering, it is common to run hundreds of simulations to investigate the dependence
of the modeled process on various simulation and input the parameters. We propose a comprehensive approach
for the visual analysis of such multi-run data to detect patterns and outliers. We use dimensionality reduction
algorithms to generate a visual representation that exhibits the distribution of the simulation results under varying
parameter settings. Each field (or even multi-field) of every time step and every simulation run is represented
as a point in a 2D space, where the 2D layout conveys similarity of the scalar fields. Points corresponding to
consecutive time steps of one run are connected by line segments, such that each simulation run is represented as a
polyline. Consequently, the multi-run data are visually encoded as a set of polylines. Variations of hue, saturation,
opacity, and shape allow for distinguishing groups of simulations and depicting various characteristics of runs. The
user can interactively change these settings, while further interaction mechanisms allow for selection, refinement,
zooming, requesting textual information, and brushing and linking to coordinated (or embedded) views of physical
and attribute space visualizations. We apply our approach to two applications with significantly different data
structure: a multi-run climate simulation over a 2D regular grid and a multi-run binary star evolution simulation
with unstructured 3D particles evolving over time. We demonstrate the contribution and impact of our visualization
method for the interactive visual analysis of the multi-run data by identifying meaningful groups of simulations,
detecting global patterns, and finding interesting outliers.

Keywords
Time-varying Data, Multi-field, Multi-modal and Multi-variate Data, Scalar Field Data, Dimensionality Reduction

1 INTRODUCTION

Multi-run (or ensemble) simulations in the fields of sci-
ence and engineering serve to investigate dependence
of modeled time-varying phenomena on various simu-
lation and input parameters. Typical goals when gener-
ating and analyzing multi-run simulations are to explore
the entire space of possible scenarios, to find optimal or
to detect critical parameter settings, and to investigate
how sensitive outputs are to certain input parameters.
Obviously, a large number of simulations need to be
performed in order to obtain a sufficiently dense pa-
rameter space sampling. The analysis of the resulting
datasets is extremely challenging, since the data often
describe time-varying multi-fields, which when com-
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puted for multiple runs quickly reach extremely large
sizes.
Novel visualization approaches can be very helpful
for researches to simplify post-processing of multi-run
datasets. This stage may include fast navigation over
the data, selection of an individual simulation (or a
time step) or a subset thereof for detailed comparison,
visual encoding of various characteristics of runs, and
easy creation of animations. However, the first step
after the dataset is generated is to throw a glance at the
dataset in order to roughly estimate its homogeneity,
to build a notion of a typical simulation behavior
(common pattern) and to identify those simulations
whose behavior significantly differs from the pattern
(outliers). We propose a technique to produce an
overview representation of a complete multi-run
dataset, equip it with a number of interaction tools
based on coordinated views, and demonstrate the
effectiveness of the resulting system on two application
examples.
The proposed framework for interactive visual analy-
sis of multi-run data is based on coordinated views of
numerous aspects of multi-run data. Pattern and out-



lier detection in multi-run simulations is supported by a
projected view of an attribute space. The attribute space
is derived from the data space by defining characteristic
properties of a simulation time step. According to that
attribute space representation of each time step of each
simulation run, we compare different time steps of the
same or different simulation runs with each other. We
create a 2D layout that depicts similarity or dissimilar-
ity of time steps using dimension reduction methods.
Each time step is represented as a point in this 2D lay-
out and runs are shown as polylines connecting those
points. In such a layout, runs of similar behavior have a
similar polyline trajectory. Hence, patterns can be ob-
served quickly and the same is true for trajectories that
do not adhere to the pattern, i.e., outliers.

Although this similarity view is most important for an-
alyzing multiple simulation runs, it is equally impor-
tant that one can relate detected outliers or otherwise
interesting runs to the parameter space and the multi-
ple fields that are simulated. Our framework is based
on coordinated views of parameter space visualization,
spatial data visualization of the fields, visualization of
the derived attribute space, and the projected views.

We present the overall framework of our work (Sec-
tion 3) and demonstrate its effectiveness and intuitive-
ness by deploying it to two rather different instances
(Section 4). The first instance is a grid-based climate
simulation, where the attribute space can be trivially
derived from the data space and the derived projection
patterns follow our intuition. The second instance is
a particle-based astrophysical simulation, where a non-
trivial computation of the attribute space was necessary
and where we show how our framework allows for in-
teractive analysis of multi-run data. In this context, we
also apply multiple coordinated projected views.

2 RELATED WORK
Increasing complexity and heterogeneity of generated
and registered scientific data becomes a hot topic in
modern researches in the field of data mining and visu-
alization. Kehrer and Hauser [KH13] wrote recently a
survey on visualization methods for multi-faceted data.
Multi-faceted is here a general term to emphasize the
fact, that scientific data may have spatio-temporal struc-
ture and/or multi-variate format, may consist of parts
stemming from different modalities, may be multi-run
and/or multi-model data.

User interaction plays a crucial role when inspecting
the interplay of initial conditions and simulation results.
Brushing and linking embedded into a coordinated mul-
tiple views framework is probably the most popular tool
in visualization systems aimed to handle multi-run data.
Examples of interactive exploration of parameter space
can be found in [MAB+97, Ma99, MOD00, SPK+07].

Pattern recognition and annotation of clusters and out-
liers can be helpful for researchers leading multi-run
simulations in order to plan further tests, re-sample pa-
rameter space to obtain detailed local information and
define critical parameter settings. A recent grid-density
based technique to complete these tasks was proposed
by Kandogan [Kan12].

Supporting uncertainty in the visual analytics process
is of great importance in systems aimed to help the user
to find optimal parameter settings. A framework for un-
certainty modeling, propagation and aggregation is pro-
posed by Correa et al. [CCM09]. Possible solutions for
graphical representation of uncertainty are discussed in
Cooke and Noortwijk [CvN00].

Bruckner and Möller [BM10] developed a visualization
system helping the user to find simulation parameters
corresponding to the desired outcome animation. Their
approach is based on a spatio-temporal clustering tech-
nique producing an overview of achievable final states
and their trajectories in the phase space. Another novel
approach for mapping of deforming mesh sequences
to the visual domain is given by Cashman and Hor-
mann [CH12]. The user is allowed, in particular, to
create an arbitrarily-shaped path in the abstract repre-
sentation domain, from which a corresponding mesh
animation can be reconstructed.

We are the first who developed a framework for ana-
lyzing multi-run time-varying multi-field data. In our
work, we propose to use dimensionality reduction al-
gorithms [JJ09] including the classical Principle Com-
ponent Analysis (PCA) [Pea01] and Multidimensional
Scaling (MDS) [BG05] to produce 2D similarity lay-
outs between time steps of multiple simulation runs.
This set-up allows for an interactive visual detection of
patterns and outliers in the multi-run data, especially
when embedded in our coordinated views framework
of parameter space visualization, spatial data visualiza-
tion, and visualization of a derived attribute space in
addition to the projected view visualization.

3 INTERACTIVE VISUAL ANALYSIS
FRAMEWORK

Multi-run data result from a repeating procedure of
picking an instance from the parameter space PS and
running a simulation for selected input parameters. For
each chosen set of parameters, the simulation typically
creates a time-varying multi-field data set, i.e., a spa-
tial phenomenon is simulated using a multitude of fields
that change over time. To effectively capture or sample
the parameter space, the simulation has to be run many
times for different initial conditions (or parameter set-
tings). As a result, one obtains a large amount of time-
varying multi-field simulation results. When changing
the parameter setting, the simulation result changes in



Figure 1: Steps of processing multi-run simulation data.
Data D is generated for a dense subset of parameter
space PS. Subset D0 of dataset D is mapped to attribute
space A. Projected view PV is an image of a dimension-
ality reduction algorithm applied to A and, therefore, it
is an abstract representation of D.

some way. In order to understand, how much a param-
eter change influences the simulation result, one has to
find a means to compare simulation results. Our frame-
work operates on the individual time steps of the mul-
tiple simulation runs and compares those time steps,
where time steps are typically multi-fields. In order to
do so effectively, we have to describe each time step
(or multi-field) using appropriate attributes. Such an
attribute space shall be significantly smaller than the
multi-field space, but still capture the main properties
of that time step. Moreover, it shall allow for a direct
comparison of two multi-fields by confronting their at-
tribute values.

Even when defining a suitable attribute space, the col-
lection of attributes of all time steps of all simulation
runs is typically too large to allow for an efficient pro-
cessing. Hence, one typically applies a pre-processing
step that subsamples the multi-run simulation space D.
This subsampling can be applied in many ways: (i) One
may subsample in the parameter space, i.e., reduce the
number of runs to a certain subgroup of runs; (ii) one
may subsample in the time domain, i.e., only consider a
certain reduced number of time steps of each simulation
run; (iii) one may subsample the variable space, i.e., out
of the multi-field data set, one only considers a certain
subset of fields; or (iv) one may subsample the spatial
domain, i.e., reduce the spatial resolution of each field.
We want to denote by D0 the subsampled space of D.
Our notations are summarized in Figure 1.

The next step is a generation of a set of descriptors for
all elements d ∈ D0, i.e., data from D0 is mapped to an
attribute space A. Element d in this context is a multi-
field. The generated attributes serve to compactly char-
acterize d. It is required that A is a metric space, so
that similarity of its elements can be measured. This
induces a metric in the original space D0 and allows for
comparing its instances, which is not always possible to
do directly.

We note that the construction of a proper space A is
an application-specific and not uniquely defined proce-
dure. However, we believe that in most cases, experts
who performed simulations can give a good advice. Be-
sides that, the number of alternatives is significantly re-

duced when trying to balance simplicity of the struc-
ture of A and its ability to reflect main characteristics
of simulations. In the subsequent sections, we provide
two examples, where attribute spaces are constructed
for two structurally different simulations from two dif-
ferent application areas. Although there is no unified
recipe on how to best define an attribute space for any
multi-run simulation, we generally believe that it is pos-
sible for any simulation output and, thus, feel that our
framework is generally applicable.

Once the attribute space is defined, we generate visual-
izations based on dimensionality reduction to map the
attribute space A to a 2D visual space, which we denote
as projected view PV . The visual encoding of PV uses
one point for each multi-field d and generates polylines
for each (time-varying) simulation run.

The main contribution of our work is to propose the
general framework and, in particular, the use of a pro-
jected view based on a suitable attribute space. How-
ever, the full effectiveness of our approach is given by
the interactive exploration of the various spaces in the
context of coordinated views. Brushing and linking be-
tween suitable visualizations of parameter space PS,
multi-field data space D0, attribute space A, and pro-
jected view PV provides means for an effective visual
analysis tool to detect patterns, trends, and outliers in
multi-run time-varying multi-field simulation data.

3.1 Parameter Space Visualization
Our parameter space visualization is based on 1D plots,
2D plots, or 2D plot matrices depending on the number
of input simulation parameters. Sampling of the param-
eter space is shown as points, such that each point cor-
responds to one simulation run. A color-coding of the
samples in the parameter space may result from a clas-
sification given by the application (e.g., chemical com-
position of modeled stars), from theoretical prediction
of simulations (e.g., parameters which determine lami-
nar and turbulent flows) or may depict the outcome of
an interactive analysis process (e.g., it may show which
simulation runs were selected by the user in any of co-
ordinated widgets).

3.2 Data Space Visualization
The data space visualization requires the visualization
of multi-field data. Here, any spatial data visualization
methods can be used. In case of two spatial dimensions,
a transfer function can be applied to generate 2D visu-
alizations. In case of three spatial dimensions, volume
visualization methods such as direct volume rendering
or isosurface extraction can be applied. The multi-field
challenge can be tackled via an integrated visualiza-
tion or via multiple (coordinated) views each visualiz-
ing one field. In our examples, we used the latter ap-
proach.



3.3 Attribute Space Visualization
As mentioned above, the definition of the attribute
space is application-specific. Its visualization depends
on the respective choice made within the application.
In some cases, attribute space visualization can be
embedded in the projected view (e.g, in form of
pictograms) to allow visual correlation of the projected
view layout with descriptive attributes.

3.4 Projected View Visualization
After data subset D0 is mapped to attribute space, it can
be projected to the visual domain of the projected view
based on dissimilarities of the elements in A. Again, it
depends on the choice of attribute space A, which pro-
jection method is most suitable. We want to provide
some guidelines: If A is isomorphic to an Euclidean
space, the range of available methods is large and in-
cludes such algorithms as PCA. Otherwise, if only dis-
similarity measures can be computed, good candidates
are MDS, Stochastic Proximity Embedding, Part-linear
Multidimensional Projection, and their variants. The
choice of a proper method should be based on two main
criteria: First, efficiency of the algorithm should allow
for fast processing of large data, and second, similarity
of projected elements should be conserved as much as
possible. The latter criterion means that the distribu-
tion of samples in attribute space shall be matched as
closely as possible in the projected view. Besides that,
if the algorithm constructs a projection operator in ex-
plicit form, it is possible to apply it later to the whole
dataset D. This is, in particular, the case if the projec-
tion acts as a linear operator.

An image of D0 on the projected view is a set of points,
each representing a certain time step of a simulation
from the dataset. Since it makes sense to analyse simu-
lation trajectories rather than separated time steps, it is
helpful to connect points representing consecutive time
steps from the same simulation run by line segments.

Based on shape and location of the drawn trajectories,
it can be easily observed, which simulation runs behave
similarly. This facilitates detecting patterns and general
trends. Moreover, outliers can be identified, where out-
lier detection relates to both finding trajectories follow-
ing abnormal or remarkable paths and single extreme
nodes denoting special states of the system. We want
to note that outliers, if any, may refer to a phenomenon
detected for a special parameter setting as well as to the
settings, for which the underlying physical model be-
comes invalid or applied numerical methods fail.

3.5 Interaction and Coordinated Views
All four views on the data contribute unique informa-
tion about the multi-run simulation. Most effective are
they, if they are coordinated such that any selections
made in one view are shown and can be further refined

in all the other views. As such, one can, for example,
detect and select outliers in the projected view, investi-
gate which parameter settings they relate to in the pa-
rameter space visualization, select a subset of the out-
liers by brushing in the parameter space, investigate re-
spective time steps of that run in the data space visu-
alization, and relate them to the attributes space to ob-
serve what attributes made them to be outliers.

Moreover, one may generate multiple attribute spaces
per element d ∈D0, e.g., one per data field. Then, mul-
tiple projected views are generated and coordination of
these views allows for interactive analysis of runs with
respective to different fields. Examples are given in the
subsequent sections. The effectiveness of the coordi-
nated interaction is best observed in the accompanying
video.

We also provide further interaction mechanisms with
the projected views. When investigating many runs or
many time steps simultaneously, opening too many co-
ordinated views may become confusing at some point.
To provide a better overview of which point of the pro-
jected view belongs to which kind of observed phe-
nomena, we provide embedded views of data or at-
tribute space visualizations as shown in Figure 2. The
user may enable an option of showing small pictograms
near selected points characterizing the current state of
the system (Figure 2a). Here, the pictograms are low-
resolution visualizations of the attribute space with a
user-defined transfer function applied. We used the
same color scheme in all renderings of data or attribute
spaces, see Figure 2c. In addition, a textual information
about a single selected element is shown in the lower-
left corner of the screen. This textual information pro-
vides the necessary information for the user to uniquely
identify the run and time step that is under investiga-
tion. Moreover, the trajectories in the projected view
are color coded. The user may choose, which infor-
mation is color coded, e.g., showing a given classifica-
tion (Figure 2a) or assigning to every simulation gets a
different color. However, since the number of simula-
tions is typically large, there is the perceptual issue that
humans can only distinguish well a certain amount of
colors with different hues. Therefore, if a group of tra-
jectories is selected, it is possible to redistribute colors
among these elements to better distinguish individual
trajectories (Figure 2b).

4 INSTANCES OF FRAMEWORK
We produce two instances of our general framework by
applying our technique to two datasets of very different
structure. The first one represents a 100-year time series
of a quasi-equilibrated (“persisting”) preindustrial cli-
mate state. The data are sampled on a 2D regular grid,
which makes the construction of attribute space trivial.
We process these easy-to-handle data to illustrate how



(a) Embedded attribute space (b) Selected trajectories

Min Max
(c) Color scheme

Figure 2: Projected view constructed for SPH dataset
(temperature field, MDS with l2-distance computation).
(a) Elements of attribute space visualizations are em-
bedded into the layout as pictograms showing tempera-
ture profile with user-defined transfer function applied.
Textual information about selected simulation is given
in the lower-left corner of the layout. Polylines denot-
ing simulations are colored according to the chemical
composition of modeled stars (3 classes). (b) Redistri-
bution of colors among selected simulations to better
distinguish the trajectories. (c) Color scheme used to
render attribute spaces in all experiments.

intuitively expectations match with the projected view
configuration, to show basic tools of user interaction,
and to validate the general concept of the proposed ap-
proach. The second dataset comes from a Smoothed
Particle Hydrodynamics (SPH) binary system simula-
tion. It is given in the form of volumetric unstructured
data, which makes the construction of the mapping to
the attribute space a non-trivial task. Here, we inves-
tigate how different multidimensional projection meth-
ods affect the resulting projection and demonstrate the
functionality of multiple coordinated views.

4.1 Gridded Climate Simulation
Simulation results in the field of weather prediction
and climate research are usually very sensitive to ini-
tial conditions. Therefore, it is a common practice to
run an ensemble of simulations with varied initial pa-
rameters. Results are then presented in the form of a set
of outcomes ranging from the most pessimistic to the
most optimistic prognosis. Climate-related simulation
data exploration was recently investigated by Hibbard
et al. [HBSB02] and by Nocke [NFB07].

4.1.1 Data description

The data represent a climate simulation which is a spin-
up of a preindustrial climate state (approx. 1850 AD).
It covers a period of 100 years with monthly mean
data written into files. Thus, the dataset consists of
1,200 time steps at which many scalar fields either
volumetric or at the Earth surface are recorded. We

picked up a number of 2D fields sampled at a regular
(longitude-latitude) grid of size 96× 48, among them
surface pressure, surface temperature, ice thickness, ice
cover, evaporation, total precipitation, cloud cover, and
snowfall.

We interpret each of the 100 simulated years as a sep-
arate run with 12 time steps. Thus, the ordinal num-
ber of the year serves as the only discrete simulation
parameter. Due to the nearly cyclic character of cli-
mate processes within each year, we expect to obtain
their representation in the projected view in form of a
pendulum trace or a circle-like curves. Of interest is
to discover trajectories deviating from the mean pattern
at most, which would correspond to the years with ex-
treme climate state.

4.1.2 Definition of Attribute Space
Since the data have a fixed spatial grid structure and res-
olutions are manageable, we decided to use the identity
for mapping from data to attribute space. Hence, the
attribute vector of an element d ∈D0 is simply the vec-
tor with the scalar entries over the 2D grid. Thus, it is
straightforward to introduce a metric for gridded scalar
fields f and g using the lp-norm as follows:

‖ f −g‖p
lp
= ∑

i, j
| fi j−gi j|p,

where indices i and j vary over the grid. In practice, it
is common to restrict consideration to cases p = 1, 2.

For the given dataset, we observed that the selected
scalar fields can be grouped into four categories as pre-
sented in Figure 3. Their values are either distributed
approximately uniformly over the whole domain or the
field behaves very differently over sea and land. More-
over, large values are either concentrated in the equato-
rial zone or close to the poles. Figure 3 shows examples
of these four categories.

(a) Evaporation (b) Cloud cover

(c) Snowfall (d) Surface temperature

Figure 3: Four types of scalar field distributions in cli-
mate simulation dataset. Field magnitudes can be very
different over sea and land as in (a) or can be almost ir-
relevant to this factor (b). Fields’ maximum values can
be reached in the polar zones (c) or near the equator (d).



(a) Cloud cover (b) Snowfall

Figure 4: Two types of process representations on pro-
jected view: Circular (a) and pendular (b). Color value
increases according to time.

4.1.3 Multi-field Exploration in Projected Views
Due to the seasonal character of the modeled process, it
was expected to obtain representations of the projected
views in one of the forms shown in Figure 4. They are
circular and pendular polylines and the results support
the intuition: Circular trajectories intuitively represent
fields where all four seasons have different characteris-
tics, while pendular trajectories represent fields where
two seasons (e.g., spring and fall) have similar charac-
teristics and the other two seasons (e.g., summer and
winter) represent the extrema.

We merged the four attribute representations shown in
Figure 3 to produce a projected view based on multi-
field data. Here, the attribute vector of the four merged
fields is just a concatenation of the four attribute vec-
tors of the four individual fields, i.e., since the number
of grid nodes is 96 · 48, the attribute vector has length
96 ·48 ·4 and is filled with values of evaporation, cloud
cover, snowfall, and surface temperature fields. PCA al-
gorithm places the items along circular trajectories. We
selected two groups of outliers based on their distance
from the imaginary mean path. The first group of poly-
lines (further denoted by I) passes through points sig-
nificantly deviating towards the inner part of the mean
path. We counted 23 such trajectories, see Figure 5a.
The second group of simulations (further denoted by
O) deviates outside the domain confined by the mean
path. There are 25 selected simulations in Figure 5b.

Comparing which simulations belong to which group,
we found 10 pairs corresponding to two consecutive
years belonging to different identified groups. When
ordered according to time, 8 of them are of type I-O,
i.e., the first year was of type I and the subsequent sec-
ond year of type O, and only two of type O-I. Also,
we detected two patterns of the form O-I-O, i.e., three
consecutive years were found with the first year of type
O, the second of type I, and the third again of type O,
and two combinations over four years of type I-O-I-O
(the groups of three and four years were not counted to-
wards the groups of two). Interestingly, there was only
one single year (43rd year of the simulation, shown as
a two-colored bar) that had strong deviations from the

(a) Group I (b) Group O

(c) Parameter space

Figure 5: Analysis of climate simulation data by means
of projected view constructed for multi-field data with
four scalar fields. The common pattern is a cyclic curve.
The mean path is shown as a black polyline. Extreme
trajectories deviating inside ((a), denoted as I) and out-
side ((b), denoted as O) from the mean path are high-
lighted. Deviation points are shown in red. 1D parame-
ter space with depicted selections is presented in (c).
Years from group I are marked in green, years from
group O in red.

mean path both towards the inside and the outside. We
show the statistics in Figure 5c. We present these re-
sults to show how quickly and intuitively one can draw
conclusions with our interactive analysis tool. As a next
step, we plan on taking these findings back to the data
providers to investigate whether our findings give new
insights to them or to further refine our analysis from
the application point of view.

4.2 Astrophysical Particle Simulation

SPH is a Lagrangian numerical method, which has a
number of built-in conservation properties, e.g., con-
servation of total mass, total energy, linear and angular
momenta, which is crucial for modeling of some hy-
drodynamical and especially astrophysical processes.
The key idea of the approach is to represent objects
as a set of particles – spatial samples changing their
positions during simulation. They carry a number of
scalar (density, temperature, etc.) and vector (velocity,
force, etc.) values, which may either evolve in time
or remain constant (e.g., mass). Interaction forces be-
tween particles, which move them from one time step
to another, are defined by non-negative radial kernels.
The same kernels are used for reconstruction of con-
tinuous fields from values at disconnected particle lo-
cations. We refer the reader to the recent review by
Rosswog [Ros09] for more details on basic principles
of SPH and to Price [Pri12] for a comprehensive expo-
sition of SPH approximation techniques.



4.2.1 Data Description
The dataset consists of simulations’ outputs of the
merger process of two White Dwarfs (WD). The
stars are bound by gravity, which triggers a mass
transfer from the lighter star (donor) to the heavier one
(accretor). This process affects the orbital evolution,
the angular momentum and the thermodynamical state
of the final object, the associated gravity wave signal,
and whether or not a particular binary merges at all.
Simulation of binary systems is of great importance
in astrophysics, see, for example, grid- [MFTD07]
and particle-based simulations [DRGRR11]. In the
grid-based calculations, the mass transfer continues for
tens of orbits, whereas particle simulations showed that
the stars merge after a few orbital periods. This led to
discussions about impact of accurate initial conditions
on the stability of the modeled process.

The main input parameters are the masses of donor and
accretor stars, denoted by M1 and M2 (M1 ≤ M2), cor-
respondingly. The main goals of the study are:

• understand the evolution of WD systems from the
onset of mass transfer until the merger,

• identify accurately the parameter space region
where detonations may occur in the lead-up to the
merger or at surface contact,

• compare against previous SPH and grid-based cal-
culations, in particular, examine the duration of sta-
ble mass transfer phase.

Both M1 and M2 (measured in units of the solar mass)
take real values. It is assumed that the simulation output
continuously depends on the governing parameters.

The available part of the dataset consisting of 78 sim-
ulations can be classified according to the chemical
composition of WDs: double Carbon-Oxygen (CO-
CO), double Helium-Carbon-Oxygen (HeCO-HeCO),
and Oxygen-Neon / Carbon-Oxygen (ONe-CO) bina-
ries, see Figure 6a. Every simulation involves 40k par-
ticles (20k particles for each star) and includes two vec-
tor fields (velocity and gravity), six scalar fields (parti-
cle radius, internal energy, mass, density, temperature,
and electron density), and many chemical units records.
The simulations are stopped after a timescale of more
than three initial orbital periods from the merger mo-
menta, which results in different number of time steps
for different simulations ranging from 600 to 1,600.
The total size of the dataset exceeds 0.5TB.

4.2.2 Choosing Data Space
To build up a representative subset D0 of the whole data,
which is possible to operate in reasonable time, we took
every tenth recorded time step from each simulation and
skipped the part of data related to chemical components
of stars. The resulting data consist of 6,231 time steps
taking 32GB of disk space.

(a) Parameter space (b) Attributes computation

Figure 6: (a) Sampling of the parameter space in SPH
dataset. Masses of two stars are given in units of solar
mass. Colors encode chemical composition of WDs:
red stands for double CO binaries, simulations involv-
ing HeCO stars are shown in green, and ONe-CO sys-
tems marked as blue. (b) Construction of attribute vec-
tor for SPH dataset. Shown is an initial stage of mass
transfer between donor (blue) and accretor (red) WDs.
A regular grid is built in the plane containing orbits of
stars. The center of mass of the accretor is placed at a
certain position on the grid. After a scalar field of in-
terest is approximated at grid nodes, these values are
used to characterize the current state of the system and
compare it against other time steps.

4.2.3 Definition of Attribute Space

It is not possible to compare different time steps from
the dataset directly due to the unstructured character of
the spatial data. Particle positions change significantly
from one time step to another within a simulation. Their
locations in different simulations are not related in any
way. Thus, a re-sampling of fields of interest on a com-
mon sampling pattern fixed in space is necessary.

Though the simulated phenomena are volumetric, they
are supposed to be symmetric with respect to the plane
parallel to the stars’ orbits and passing through the cen-
ters of mass of the stars. In the following, we call this
plane a cross-section. Footprints of fields on this plane
are usually shown by astrophysicists in their demonstra-
tions to illustrate findings. Thus, we decide to construct
a 2D regular grid on the cross-section and interpolate
scalar fields at the grid nodes using native SPH approx-
imation. Such data arrays serve as elements of the at-
tribute space in our algorithm. Their comparison can be
handled as done for the climate simulation data.

When orbiting, stars change their absolute position
in space, whereas their relative position may remain
nearly the same. It is desired to perform analyses
which are invariant to the absolute positions of stars.
Our solution relies on the fact that, while the donor
star is being disrupted, the accretor remains a relatively
stable object. Thus, the vector pointing out of the
center of total mass towards the center of mass of
the accretor defines the orientation of the system.
Therefore, we align the x-direction of the constructed
grid with this vector, shift it in order to place the center



Figure 7: Cross-sections with approximated density
(left) and temperature (right) field of a ONe-CO binary
with masses M1 = 0.65 and M2 = 1.1. A dark (cold)
region inside the accretor star is due to the cold and
isothermal initial WD approximation used in the simu-
lation. The heating processes take place at the boundary
of the accretor star when merging.

of the heaviest star at the point (0.75,0.0) (relative grid
coordinates), and perform no scaling. The extents of
the grid are chosen to cover the space occupied by stars
in any simulation. An example is shown in Figure 6b.

In our experiments, we worked with grids of size 1282.
For example, cross-sections with approximated density
and temperature field of a ONe-CO binary with masses
M1 = 0.65 and M2 = 1.1 are shown in Figure 7.

4.2.4 Visual Exploration with Projected Views
Projected views are helpful for the analysis of multi-run
simulation data, especially, in tasks of outlier detection
and interactive classification of results. We started our
analysis of the multi-run SPH simulation dataset with
the generation of projected views for density and tem-
perature fields using the PCA algorithm. The layout
for the density field (see Figure 8) shows a good local-
ization of chemical composition classes, a clear pattern
of simulation evolution in form of arc-like paths, and a
good layer-wise separation of trajectories according to
their input parameters. At the same time, several trajec-
tories not following the common pattern can be easily
distinguished. Some are highlighted in Figure 8b and
the corresponding parameter settings are highlighted in
the parameter visualization in Figure 8c.

We detected three groups of outliers. The first one con-
sists of 6 simulations from the red group (double CO-
star systems), in which both stars have same masses (di-
agonal elements in the parameter space corresponding
to M1 = M2 = 0.8, . . . ,1.05). Their trajectories start in
the middle part of the projected view in Figure 8b and
turn to the top-right direction instead of following arc-
like paths. Since both stars have equal masses, there are
no donor and accretor roles in these systems. Both stars
should merge symmetrically and that explains the dif-
ferent shape of their trajectories. We asked our collab-
orators who provided the data why the rest three CO-
systems with M1 = M2 = 0.65, 0.7 ,0.75 do not show
any deviation from the pattern behavior. We were told
that high total mass of the binary (M1 +M2) leads to

(a) Projected view (density) (b) Outliers selection

(c) Selection in parameter space (d) Selection in projected view
(temperature)

Figure 8: Outliers detection on projected view built for
density field from SPH dataset. Simulation trajectories
follow an arc-like paths in the clockwise direction in
the layout (a). There is a good localization of chemical
composition classes and a clear distribution of simula-
tions among different layout regions. Some trajecto-
ries do not follow a common pattern. Their selection is
shown in (b). Corresponding selection in the parameter
space is presented in (c). Not all of the detected out-
liers can be identified when using projected view built
for temperature field (d).

fast disruption of stars. For fast processing, its sym-
metry can be easily broken by numerical noise. That
means that for the selected six outlier simulations, the
numerical algorithm failed to preserve their symmetry
by producing physically unreliable results. These simu-
lation were already on the “black list” of our collabora-
tors, since their number of orbits did not fit the overall
picture, which made them suspicious. For slow evolv-
ing systems with low total mass (smaller than 1.6), we
observed that the results still show physical soundness.

The second group of outliers consists of five simula-
tions belonging to the ONe-CO group (shown in blue
color). Their paths reach the most top-right region
that is occupied by nodes and then go vertically down.
Analysis of the parameter space in Figure 8c shows that
these outliers have large values of total mass. This fact
affects the physics, which can be better explained when
looking to the temperature field, see below.

Finally, the last outlier, which is the red trajectory in
Figure 8b that starts at the lower-right corner of the pro-
jected view, shows a strange behavior in the last part of
its evolution. Its trajectory goes in reverse direction and
then stabilizes around a certain position. Our collabo-
rators explained us that this simulation was not stopped



after three initial orbital periods from the merger mo-
mentum. It was decided to run computations longer,
since the remnant object proved to be stable. Using our
projected view, we were able to easily identify this run.

Now, we make use of coordinated interaction between
multiple projected views. The outliers identified above
are shown in Figure 8d on the projected view built for
the temperature field. It is worth to note that two of the
three outlier groups identified above can also be iden-
tified in this layout. However, the equal masses outlier
group, which was the first one we discussed, does not
look odd. This means that developed instability of com-
putations mostly affected the density distribution and
not so much the temperature field.

Now, we investigate the entire picture of the projected
view built for the temperature field, see Figure 9a, and
start a similar analysis as for the projected density view.
Here, we identified two subgroups for further investiga-
tions, namely the two groups of blue polylines marked
as “H” and “C” in (b). Group “H” includes the blue
outlier group identified above. The groups differ in the
mass of the donor star, as follows from the parameter
space visualization (c). Then, we looked at the attribute
space visualizations to find reasons for different trajec-
tory shapes. We figured out that the inner part of the ac-
cretor remains cold along paths from group “C”, similar
to the case presented in Figure 7 (right). The remnants
from group “H”, on the other hand, show intensive heat-
ing up of the internal region. A physical explanation re-
lies on the fact that massive donors deliver more matter
to the accretor, which shifts the location of the maximal
temperature inside the star and leads to its heating up.
The two groups detected are hard to distinguish on the
projected view constructed for the density field (d), as
they show a similar behavior. Hence, it is important to
use multiple coordinated projected views to detect and
analyze all possibly interesting trajectories.

We note that simulations involving stars with He in
their composition (green group) do not show big evo-
lutionary changes as opposed to the binaries with a CO
companion star. The trajectories of the green group
are bound to a small space in the view, which requires
zooming in for further analysis. These systems have
very low total mass and, thus, the magnitudes of den-
sity and temperature changes are very low, which is
reflected in the respective projected views we gener-
ated. In fact, direct comparison of binaries with He- and
CO-WDs is not fair. Much lower temperature value is
needed to trigger nuclear burning for He-stars than for
CO-stars. The systems from the green group more fre-
quently end their evolution with explosion. Thus, such
binaries should be processed and analyzed separately.

When computing the attribute space elements, the 2D
grid was rotated and translated according to current po-
sitions of stars. Looking to the rotation angle history, it

(a) Projected view (temper.) (b) Subgroup selection

(c) Selection in parameter space (d) Selection in projected view
(density)

Figure 9: Subgroups selection on projected view for
temperature field from SPH dataset (a). Two subgroups
of the ONe-CO simulation class (blue) show different
behavior (b). They correspond to the parameter settings
presented in (c). Same subgroups exhibit a common
pattern on the projected view built for density field (d),
thus, they can not be identified there.

is easy to estimate the number of orbits resolved in each
simulation and record the found values as simulation at-
tributes. Figure 10 shows a projected view created by
means of MDS algorithm with l2-distance measure for
the density field. Color coded are the number of orbits
represented in each simulation ranging from small (red,
rapid merging with intensive heating) to high (blue,
gradual merging). Colors in the parameter space match
the colors for trajectories. We observe that the num-
ber of orbits is more sensitive to variation of M1 (mass
of the donor star) than to changing the second param-
eter (mass of the accretor). However, since there was
no strict criterion to stop simulation and different runs
lasted different number of periods from the merger mo-
menta, the results in Figure 10 characterize the simula-
tion performance rather than the modeled processes.

Figure 10: Projected view (left) and parameter space
(right) color coded according to the number of orbits
within each simulation. Red stands for high and blue
for low values.



5 CONCLUSION
We have presented a framework for the visual analy-
sis of multi-run time-varying multi-field data that al-
lows for effective and intuitive detection of patterns and
outliers in multi-run data. We applied our framework
to two instances of different character (gridded climate
simulations and astrophysical particle simulations) to
show its general applicability. The most excessively
used component of our framework is the projected view,
which is based on similarity within a metric attribute
space. However, linked views to parameter space vi-
sualization and spatial data visualization allowed for a
comprehensive visual analysis.

Currently, we apply our framework in a post-processing
analysis setting. In future work, we plan to extend it
such that we can interpolate and extrapolate in param-
eter space to guide the application scientists towards
interesting parameter setting. Hence, our framework
could serve as a computational steering tool.
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